A study funded by grants from the National Cancer Institute and the National Institutes of Health and presented at the 11th AACR Conference on The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved, held November 2-5, 2018 in the Sheraton New Orleans Hotel, New Orleans, Louisiana, USA, explains how a prognostic model developed using a machine learning approach could identify African-American breast cancer patients with increased risk of death.

Reflecting a transdisciplinary field of professionals from academia, industry, government, and the community, the conferences is designed to advance the understanding of, and ultimately help to eliminate, the disparities along the cancer continuum that represent a major public health problem in our country.

?Using gene expression data, we have developed a machine learning pattern to accurately stratify African-American breast cancer patients with high and low risks of death, which could help inform clinical decision making,? said Shristi Bhattarai, Ph.D candidate in the lab of Ritu Aneja, Ph.D, at the Department of Biology, Georgia State University.


We wanted to identify a fingerprint that could stratify African-American breast cancer patients with different prognostic risks…


Outcomes
?As African-American women tend to have worse breast cancer outcomes, this study will help us to identify race-based differences in this cohort, which could potentially lead to specific therapeutic regimens for African-American women with breast cancer.?

“While the incidence of breast cancer between European-American and African-American women in the United States is similar, the age-adjusted mortality rates are 40% higher in African- American women with breast cancer,” Bhattarai said.

Advertisement #3

?The etiology of this startling outcome disparity is multifactorial, arising from the combination of socioeconomic inequality with inherently more aggressive tumor biology in women of African ancestry,? she noted.

?We wanted to identify a fingerprint that could stratify African-American breast cancer patients with different prognostic risks,? Bhattarai added.

Utilizing data from The Cancer Proteome Atlas (TCPA), Bhattarai and colleagues analyzed protein expression levels of 224 proteins from 754 breast cancer patients. Of these patients, 620 were of European descent, and 134 were African-American. The algorithm they developed enabled the researchers to identify significant protein combinations that were associated with breast cancer survival, the authors explained.

Deep learning algorithm
The deep learning algorithm identified a combination of four proteins for optimal prognostic prediction: Bcl2-like protein (BAX), inositol polyphosphate-4-phosphatase, type II (INPP4B), X-ray repair cross-complementing protein 1 (XRCC1), and Cleaved Poly (ADP-ribose) polymerase (c-PARP). This combination of proteins could stratify high-risk African-American breast cancer patients with 86 percent accuracy.

?Interestingly, these proteins did not have a significant prognostic value individually,? said co-author Sergey Klimov, Ph.D candidate in the lab of Ritu Aneja in the Department of Biology at Georgia State University.

?However, their combined effect within the machine-learning model could identify an African-American cohort that had five times increased risk of death,? Klimov added.

After controlling for clinicopathological variables including patients? age and cancer stage, the model could identify African-American women that had nearly 11 times increased risk of death.

The researchers were not able to stratify European-American breast cancer patients into low- and high-risk populations using this specific model, suggesting that this model is only prognostic for African-American breast cancer patients.

?We are moving toward the phase of clinical research where we can identify very specific patterns for understudied demographic groups to find high-risk patients so that they can be recruited for additional therapies,? said Aneja.

?We are excited that our model has the potential to inform clinicians to prioritize African-American breast cancer patients for appropriate clinical trials and also help patients make decisions about enrolling in specific clinical trials,??Aneja explained.

Limitations
Limitations of this study include a lack of validation in other cohorts. ?We will need to validate this model in different groups of African-American breast cancer patients,? Aneja noted.

?We want to make sure that this model is generalizable to different methodologies,? she concluded.


Last Editorial Review: November 2, 2018

Featured Image: Breast cancer charity race: Women in pink Courtesy: ? 2018 Fotolia. Used with permission.

Copyright ? 2010 ? 2018 Sunvalley Communication, LLC. All rights reserved. Republication or redistribution of Sunvalley Communication content, including by framing or similar means, is expressly prohibited without the prior written consent of Sunvalley Communication. Sunvalley Communication shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon. Onco?Zine, Oncozine and The Onco?Zine Brief are registered trademarks and trademarks of Sunvalley Communication around the world.

Advertisement #5